Matrix representation of Bilinear Multivariate Quadratic Quasigroups of order 2^{n}

Marija Mihova*

*Ss. Cyril and Methodius University, Faculty of Computer Science and Engineering, Skopje
The quasigroup $\left(\{0,1\}^{n}, *\right)$ is called a Bilinear Multivariate Quadratic Quasigroups (BMQQ) if the quasigroup operation can be represented by a vector valued Boolean function $f(\vec{x}, \vec{y})=\vec{z}$, where for some constants $c_{k}, a_{k_{i}}, b_{k_{i}} \in\{0,1\}, k, i=\overline{1, n}$

$$
\begin{equation*}
z_{k}=c_{k}+\sum_{i=1}^{n} a_{k_{i}} x_{i}+\sum_{i=1}^{n} b_{k_{i}} y_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} d_{k_{i j}} x_{i} y_{j} \tag{1}
\end{equation*}
$$

But, not every Boolean function yields a quasigroup. In this paper we determine the relation between the coefficients, so that the above inequality defines a quasigroup. Moreover, we analyze the relationship between the coefficients when the quasigroup is commutative and associative.

